Peer-Reviewed Conference and Journal Papers

* denotes equal contribution or advising

Why Do Decision Makers (Not) Use AI? A Cross-Domain Analysis of Factors Impacting AI Adoption
Rebecca Yu, Valerie Chen, Ameet Talwalkar, Hoda Heidari
AIES, 2025

When Benchmarks Talk: Re-Evaluating Code LLMs with Interactive Feedback
Jane Pan*, Ryan Shar*, Jacob Pfau, Ameet Talwalkar, He He**, and Valerie Chen**
ACL Findings, 2025

Copilot Arena: A Platform for Code LLM Evaluation in the Wild
Wayne Chi*, Valerie Chen*, Anastasios Nikolas Angelopoulos, Wei-Lin Chiang, Aditya Mittal, Naman Jain, Tianjun Zhang, Ion Stoica, Chris Donahue, Ameet Talwalkar
ICML, 2025

Need Help? Designing Proactive AI Assistants for Programming
Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David Sontag, Ameet Talwalkar
CHI, 2025

Learning Personalized Decision Support Policies
Umang Bhatt*, Valerie Chen*, Katherine M. Collins, Parameswaran Kamalaruban, Emma Kallina, Adrian Weller, Ameet Talwalkar
AAAI, 2025

The RealHumanEval: Evaluating Large Language Models’ Abilities to Support Programmers
Hussein Mozannar*, Valerie Chen*, Mohammed Alsobay, Subhro Das, Sebastian Zhao, Dennis Wei, Manish Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, David Sontag
TMLR, 2025 (Expert Certification)

Do LLMs Exhibit Human-Like Response Biases? A Case Study in Survey Design
Lindia Tjuatja*, Valerie Chen*, Tongshuang Wu, Ameet Talwalkar, Graham Neubig
TACL, 2024

PCNN: Probable-Class Nearest-Neighbor Explanations Improve Fine-Grained Image Classification Accuracy for AIs and Humans
Giang Nguyen, Valerie Chen, Mohammad Reza Taesiri, Anh Totti Nguyen
TMLR, 2024 (J2C: full presentation at ICLR 2025)

Applying Interpretable Machine Learning in Computational Biology—Pitfalls, Recommendations and Opportunities for New Developments
Valerie Chen, Muyu Yang, Wenbo Cui, Joon Sik Kim, Ameet Talwalkar, Jian Ma
Nature Methods, 2024

On the Importance of Application-Grounded Experimental Design for Evaluating Explainable ML Methods
Kasun Amarasinghe, Kit T. Rodolfa, Sérgio Jesus, Valerie Chen, Vladimir Balayan, Pedro Saleiro, Pedro Bizarro, Ameet Talwalkar, Rayid Ghani
AAAI, 2024

Understanding the Role of Human Intuition on Reliance in Human–AI Decision-Making with Explanations
Valerie Chen, Q. Vera Liao, Jennifer Wortman Vaughan, Gagan Bansal
CSCW, 2023

Assisting Human Decisions in Document Matching
Joon Sik Kim, Valerie Chen, Danish Pruthi, Nihar B. Shah, Ameet Talwalkar
TMLR, 2024

FeedbackLogs: Recording and Incorporating Stakeholder Feedback into Machine Learning Pipelines
Matthew Barker, Emma Kallina, Dhananjay Ashok, Katherine Collins, Ashley Casovan, Adrian Weller, Ameet Talwalkar, Valerie Chen*, Umang* Bhatt
EAAMO, 2023

Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen, Umang Bhatt, Hoda Heidari, Adrian Weller, Ameet Talwalkar
Patterns, 2023

Use-Case-Grounded Simulations for Explanation Evaluation
Valerie Chen, Nari Johnson, Nicholay Topin, Gregory Plumb, Ameet Talwalkar
NeurIPS, 2022

Bayesian Persuasion for Algorithmic Recourse
Keegan Harris, Valerie Chen, Joon Kim, Ameet Talwalkar, Hoda Heidari, Steven Z. Wu
NeurIPS, 2022

Interpretable Machine Learning: Moving from Mythos to Diagnostics
Valerie Chen, Jeffrey Li, Joon Sik Kim, Gregory Plumb, Ameet Talwalkar
Communications of the ACM, 2022

Ask Your Humans: Using Human Instructions to Improve Generalization in Reinforcement Learning
Valerie Chen, Abhinav Gupta, Kenneth Marino
ICLR, 2021

Task-Aware Novelty Detection for Visual-Based Deep Learning in Autonomous Systems
Valerie Chen, Man-Ki Yoon, Zhong Shao
ICRA, 2020

Workshop and Demo Papers

Task Completion Agents are Not Ideal Collaborators
Shannon Zejiang Shen*, Valerie Chen*, Ken Gu, Alexis Ross, Zixian Ma, Jillian Ross, Alex Gu, Chenglei Si, Wayne Chi, Andi Peng, Jocelyn J. Shen, Ameet Talwalkar, Tongshuang Wu**, David Sontag**
NeurIPS Workshop on Multi-Turn Interactions in Large Language Models, 2025 (Spotlight)

AI Impact on Human Proof Formalization Workflows
Katherine M. Collins, Simon Frieder, Jonas Bayer, Jacob Loader, Jeck Lim, Peiyang Song, Fabian Zasier, Lexin Zhou, Shanda Li, Shi-Zhuo Looi, Jose Hernandez-Orallo, Joshua B. Tenenbaum, Cameron Freer, Umang Bhatt, Adrian Weller, Valerie Chen*, Ilia Sucholutsky*
NeurIPS Workshop on Mathematical Reasoning and AI, 2024

CodingGenie: A Proactive LLM-Powered Programming Assistant
Sebastian Zhao, Alan Zhu, Hussein Mozannar, David Sontag, Ameet Talwalkar, Valerie Chen
ACM FSE (Demo), 2025

Code with Me or for Me? How Increasing AI Automation Transforms Developer Workflows
Valerie Chen, Ameet Talwalkar, Robert Brennan, Graham Neubig
ICML Women in Machine Learning Workshop, 2025

Coding Agents with Multimodal Browsing are Generalist Problem Solvers
Aditya Bharat Soni, Boxuan Li, Xingyao Wang, Valerie Chen, Graham Neubig
ICML Workshop on Computer Use Agents, 2025

Modulating Language Model Experiences through Frictions
Katherine M. Collins, Valerie Chen, Ilia Sucholutsky, Hannah Rose Kirk, Malak Sadek, Holli Sargeant, Ameet Talwalkar, Adrian Weller, Umang Bhatt
NeurIPS Workshop on Behavioral Machine Learning, 2024

Simulating Iterative Human–AI Interaction in Programming with LLMs
Hussein Mozannar*, Valerie Chen*, Dennis Wei, Prasanna Sattigeri, Manish Nagireddy, Subhro Das, Ameet Talwalkar, David Sontag
NeurIPS Workshop on Instruction Tuning and Instruction Following, 2023

A Case Study on Designing Evaluations of ML Explanations with Simulated User Studies
Ada Martin, Valerie Chen, Sérgio Jesus, Pedro Saleiro
ICLR Workshop on Pitfalls of Limited Data and Computation for Trustworthy ML, 2023

Novelty Detection via Network Saliency in Visual-Based Deep Learning
Valerie Chen, Man-Ki Yoon, Zhong Shao
IEEE/IFIP DSN Workshops, 2019

Secure Computation for Machine Learning with SPDZ
Valerie Chen, Valerio Pastro, Mariana Raykova
NeurIPS Workshop on Privacy Preserving Machine Learning, 2019